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Motivation

» Why multi-core:

> Heat dissipation, memory bottleneck, physical limits
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Motivation

» Why multi-core:

> Heat dissipation, memory bottleneck, physical limits
> Multi-core challenges: Synchronization, load balance, etc.

» Lock-free Data Structures:

Lock-Freedom: Non-blocking system-wide progress guarantee
Optimistic Conflict Control

Limitations of their lock-based counterparts: deadlocks, convoying
and programming flexibility

High scalability

v

v

v

v

» Major optimization criterion (road to Exascale, battery
lifetime for embedded systems, etc.) decomposed into:

> Power
» Throughput (ops/unit of time)
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Settings

Output: Data structure throughput, i.e. number of successful operations
per unit of time

Procedure AbstractAlgorithm

1 Initialization();

2 while ! done do
Parallel_Work(); /* Application specific code, conflict-free */

3
4 | while ! success do

5 current < Read(AP);
6

7

new < Critical_Work(current);
success <— CAS(AP, current, new);
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Settings

Output: Data structure throughput, i.e. number of successful operations
per unit of time

Procedure AbstractAlgorithm

1 Initialization();

2 while ! done do
3 | Parallel_Work(); /* Application specific code, conflict-free */

4 | while ! success do

5 current < Read(AP);
6

7

new < Critical_Work(current);
success <— CAS(AP, current, new);

Inputs of the analysis:
» Platform parameters: CAS and Read Latencies, in clock cycles
> Algorithm parameters:
» Critical Work and Parallel Work Latencies, in clock cycles
> Total number of threads
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Example: Treiber’s Stack Pop operation

Case = Constant == Exponential ™ Poisson

cw = 50, threads = 8
12000 -
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8000-
6000 -

4000- |
6000

Throughput (ops/msec)

2000 4000
Parallel Work (cycles)
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Executions Under Contention Levels

Throughput

Parallel work
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Executions Under Contention Levels

—— parallel work

Throughput

—— successful retry

—— failed retry

Low contention

Parallel work

To

T
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System |—
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Executions Under Contention Levels —— parallel work

—— successful retry

Throughput —— failed retry
Peak performance

Parallel work

77?1)”::”::”::”::‘\
T — — — — \

System -7
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Executions Under Contention Levels

Throughput

High contention

—— parallel work

—— successful retry

—— failed retry

Parallel work

To 1 1 1 1 1 1 1 \
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Impacting Factors

» Failed Retries

— ~

» Atomic CAS Conflicts

— ~ I : I
'CAS

Expansion

— o~
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Analyses

can be null success period

useless

expansion
work

slack time completion time

» The analyses are centered around a single variable P,;, the number
threads inside the retry loop
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Average-Based Approach

» Throughtput: expectation of success period at a random time

» Relies on queueing theory (Little’s law) and focus on average
behaviour

5p (Py) = pw/(P — Py) (1)
» Assuming two modes of contention:
> Non-contended:

@(I?,/):(rc+cw+cc+pw)/P:(rc+cw+cc)/l7,/ (2)

> Contended: B
(i) Given Py, calculate the expected expansion: € (P,/)

(ii) Given Py, calculate the slack time: st (Py)
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CAS Expansion and Slack Time

. . Previously
Read & Critical Work Expansion expanded CAS

» Input: P, threads already in the retry loop

> A new thread attempts to CAS during the retry
(Read + Critical_Work + € (P,) + CAS), within a probability h:

_ _ retry
e (Pah) —e(Pr)rhx [
0

> Assume a thread has equal probability to be anywhere in the retry
loop

st (Py) = retry /(P +1) 3)
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Unified Solving and Throughput Estimate

» Unified Solving:

Py+2 —
rexravtee Tt l oy e (Py)) + 2, (4)
Prl 'Drl +1
The system switches from being non-contended to being contended
5 _ plo)
at Py = P,”, where

cc+cw —rc (\/1+4(rc—|—cw+cc)(cw+2cc) _1>.

2(ew + 2cc) (cc+ cw — rc)?

0
Pr(l):

» Fixed point iteration on P, to find the value that obeys Little's Law
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Stochastic Approach

» Analysis based on Markov Chains and stochastic sequence of success periods

results in the throughput estimate

» P, just after a successful CAS, renders the state of the system

/> Eint

Internal
execution

Ecxt

0 new thread k + 1 new threads

y r v

.

at least 1
hew thread

= KN |
A A
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Deterministic Approach

parallel work
successful retry
failed retry

» A tight analysis when cw and pw are constants —_
W\ idle thread

> Properties minimize slack time and conflicts

Past Present Future
— | —
- _
T
T2
Ts
System — N

Q263
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Throughput Estimation: Synthetic tests

Metric = Throughput = - Failures

Case == Average == Bound == Constructive == Real Constant == Real Poisson
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Throughput Estimation: Synthetic tests

Case = Low == High == Average = Real
cw =50, threads = 8 cw = 200, threads = 8
12000- 8000
10000- 60004
8000-
6000- 4000-

4000, ¥ ' ' ' | i :
0 2000 4000 6000 0 2500 5000 7500 10000
cw = 600, threads = 8 cw = 1600, threads = 8
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Parallel Work (cycles)
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Power Estimation
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General Power Model Power Estimation

Power split into:
» Static part: cost of turning the machine on
> Activation part: fixed cost for each socket in use

» Dynamic part: supplementary cost depending on the running
application

In accordance with the RAPL energy counters, each part further
decomposed per-component:

» Memory
» CPU
» Uncore

Finally,

Pow = Z (POW(stat,X) + POW(active,X) + Pow(dme))
Xe{M,C,U}
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CPU Power Estimation

» Dynamic memory and uncore power is proportional to the intensity
of main memory accesses and remote accesses

v

Each thread mapped on a dedicated core

Powt(octl, = Threads x Pow!'©)

v

Dyn. Cpu Power: IPC (different for the retry loop and parallel work)

v

Time segmentation (r: ratio of time spent in retry loop)

Pow!©) = r x Powr(,c) +(1—=r) x Powf$)

v

Two samples are used to obtain Powr(,c) and Pow,gs,c)
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Treiber’s Stack Pop operation Power Estimation

Frequency = 1.2 Ghz =2.3 Ghz=3.4 Ghz

Distribution = Constant Distribution = Exponential Distribution = Normal

Average Power (Watts)

0 1000 2000 3000 4000 5000 0 4000 5000 0 1000 2000 3000 4000 5000

00 2000 3000
Parallel Work (cycles)
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Conclusion Power Estimation

» Three approaches based on the estimation of success period

» Validate our model using synthetic tests and several reference data
structures

» Power Model for CPU platform

» Energy efficiency of lock-free data structures based on the ratio of
time spent in retry loops
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